Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Mikrochim Acta ; 191(6): 319, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727763

RESUMEN

The high-residual and bioaccumulation property of organophosphorus pesticides (OPs) creates enormous risks towards the ecological environment and human health, promoting the research for smart adsorbents and detection methods. Herein, 2D hemin-bridged MOF nanozyme (2D-ZHM) was fabricated and applied to the efficient removal and ultrasensitive dual-mode aptasensing of OPs. On the one hand, the prepared 2D-ZHM contained Zr-OH groups with high affinity for phosphate groups, endowing it with selective recognition and high adsorption capacity for OPs (285.7 mg g-1 for glyphosate). On the other hand, the enhanced peroxidase-mimicking biocatalytic property of 2D-ZHM allowed rapid H2O2-directed transformation of 3,3',5,5'-tetramethylbenzidine to oxidic product, producing detectable colorimetric or photothermal signals. Using aptamers of specific recognition capacity, the rapid quantification of two typical OPs, glyphosate and omethoate, was realized with remarkable sensitivity and selectivity. The limit of detections (LODs) of glyphosate were 0.004 nM and 0.02 nM for colorimetric and photothermal methods, respectively, and the LODs of omethoate were 0.005 nM and 0.04 nM for colorimetric and photothermal methods, respectively. The constructed dual-mode aptasensing platform exhibited outstanding performance for monitoring OPs in water and fruit samples. This work provides a novel pathway to develop MOF-based artificial peroxidase and integrated platform for pollutant removal and multi-mode aptasensing.


Asunto(s)
Glicina , Glifosato , Hemina , Límite de Detección , Estructuras Metalorgánicas , Plaguicidas , Plaguicidas/análisis , Plaguicidas/química , Estructuras Metalorgánicas/química , Hemina/química , Glicina/análogos & derivados , Glicina/química , Glicina/análisis , Colorimetría/métodos , Bencidinas/química , Adsorción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Peróxido de Hidrógeno/química , Dimetoato/análisis , Dimetoato/química , Aptámeros de Nucleótidos/química , Compuestos Organofosforados/análisis , Compuestos Organofosforados/química
2.
J Chromatogr A ; 1722: 464859, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604056

RESUMEN

In this study, molecularly imprinted polymers (MIPs) were prepared for the specific recognition of organophosphorus pesticides and a rapid, efficient and simple method was established for the detection of dimethoate (DIT) in food samples. Fe3O4 magnetic nanoparticles were synthesized by co-precipitation, and Fe3O4/ZIF-8 complexes were prepared by a modified in-situ polymerization method, and then magnetic molecularly imprinted polymers (MMIPs) were prepared and synthetic route was optimized by applying density functional theory (DFT). The morphological characterization showed that the MMIPs were coarse porous spheres with an average particle size of 50 nm. The synthesized materials are highly selective for the organophosphorus pesticide dimethoate with an adsorption capacity of 461.50 mg·g-1 and are effective resistance to matrix effects. A novel method for the determination of DIT in cabbage was developed using the prepared MMIPs in combination with HPLC. The practical results showed that the method can meet the requirements for the determination of DIT in cabbage with recoveries of 85.6-121.1 % and detection limits of 0.033 µg·kg-1.


Asunto(s)
Brassica , Dimetoato , Límite de Detección , Polímeros Impresos Molecularmente , Dimetoato/análisis , Brassica/química , Polímeros Impresos Molecularmente/química , Adsorción , Cromatografía Líquida de Alta Presión/métodos , Impresión Molecular/métodos , Nanopartículas de Magnetita/química , Extracción en Fase Sólida/métodos , Contaminación de Alimentos/análisis
3.
Environ Sci Pollut Res Int ; 29(50): 75790-75804, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35661308

RESUMEN

Field and laboratory experiments were conducted to study the effect of simple decontamination methods and processing on imidacloprid, dimethoate, and emamectin benzoate residues in grapes and their processed products by liquid chromatography-mass spectrometry. Among the decontamination methods evaluated, washing with NaCl (2%) solution was effective for reducing imidacloprid (77.55%), dimethoate (83.27%), and emamectin benzoate (77.28%) residues in mature grapes. No metabolites (omethoate and 6-chloronicotinic acid) were detected in both decontamination and processing studies. The grapes were processed into various products, including fresh juice, squash, and raisin, following the standard effective steps for each product. Washing with NaCl (2%) solution for decontamination was included as an additional step in the standard protocol and resulted in substantial removal of surface residues of the selected insecticides. The processing factor calculated was less than one for all the products.


Asunto(s)
Insecticidas , Residuos de Plaguicidas , Vitis , Descontaminación , Dimetoato/análisis , Insecticidas/análisis , Ivermectina/análogos & derivados , Neonicotinoides , Nitrocompuestos , Residuos de Plaguicidas/análisis , Cloruro de Sodio/análisis , Vitis/química
4.
J Sci Food Agric ; 102(14): 6612-6622, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35596658

RESUMEN

BACKGROUND: Ultrasound has the potential to increase microbial metabolic activity, so this study explored the stimulatory effect of ultrasound pre-treatment on the degradation of four common pesticides (fenitrothion, chlorpyrifos, profenofos, and dimethoate) during milk fermentation by Lactobacillus plantarum and its effect on yogurt quality. RESULTS: Appropriate ultrasound pretreatment significantly enhanced the growth of L. plantarum. The degradation percentages of pesticides increased by 19-38% under ultrasound treatment. Ultrasonic intensity, pulse duty cycle, and duration time were key factors affecting microbial growth and pesticide degradation. Under optimal ultrasonic pre-treatment conditions, the degradation rate constants of four pesticides were at least 3.4 times higher than those without sonication. In addition, such ultrasound pretreatment significantly shortened yogurt fermentation time, increased the water holding capacity, hardness and antioxidant activity of the yogurt, and improved the flavor quality of the yogurt. CONCLUSION: Ultrasonic pretreatment significantly accelerated the degradation of the four pesticides during yogurt fermentation. In addition, such ultrasound pretreatment increased the efficiency of yogurt making and improved the quality of yogurt in terms of water holding capacity, firmness, antioxidant activity, and flavor. These findings provide a basis for the application of ultrasound to the removal of pesticide residues and quality improvement of yogurt. © 2022 Society of Chemical Industry.


Asunto(s)
Cloropirifos , Residuos de Plaguicidas , Plaguicidas , Terapia por Ultrasonido , Animales , Antioxidantes/análisis , Cloropirifos/análisis , Dimetoato/análisis , Fenitrotión/análisis , Fenitrotión/metabolismo , Fermentación , Leche/química , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Agua/análisis , Yogur/análisis
5.
Environ Sci Pollut Res Int ; 29(30): 45131-45149, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35474428

RESUMEN

The application of pesticides enhances food production vastly, and it cannot be prevented; longer fresh produce is contaminated with health-threatening pesticides even though traditional processing methods can remove these pesticides from food surfaces to a certain extent; novel emerging technologies such as cold plasma, ultrasound, electrolyzed water, and pulsed electric field could more effectively dissipate the pesticide content in food without the release of toxic residual on the food surface. The present review focuses on applying emerging technologies to degrade pesticide residues in great utility in the food processing industries. This review also discusses the pesticide removal efficacy and its mechanism involved in these technologies. The oxidation principle in cold plasma is recently gaining more importance for the degradation of pesticide residue in the food processing industries. Analysis of the emerging physical processing methods indicated greater efficacy in eradicating pesticide residues during agriculture processing. Even though the technologies such as EO (99% reduction in dimethoate), ultrasound (98.96% for chlorpyrifos), and irradiation (99.8% for pesticide in aqueous solution) can achieve promising results in pesticide degradation level, the rate and inactivation highly depend on the type of equipment and processing parameters involved in different techniques, surface characteristics of produce, treatment conditions, and nature of the pesticide. Therefore, to effectively remove these health-threatening pesticides from food surfaces, it is necessary to know the process parameters and efficacy of the applied technology on various pesticides.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Gases em Plasma , Dimetoato/análisis , Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos , Residuos de Plaguicidas/análisis , Plaguicidas/análisis
6.
J Sep Sci ; 45(11): 1831-1838, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35315569

RESUMEN

This study presents the method development, validation, and simultaneous determination of dimethoate and its metabolite omethoate in curry leaf. Samples were extracted following modified quick, easy, cheap, effective, rugged, and safe extraction protocol and analyzed using liquid chromatography-tandem mass spectrometry. The limit of quantification in the matrix was 0.005 µg g-1 for dimethoate and omethoate. Extraction using acetonitrile recorded the average recoveries in the range of 82.25 to 112.97% for dimethoate and 85.57 to 107.22% for omethoate at 0.005, 0.025 and 0.050 µg g-1 fortification levels and relative standard deviation less than 5%. Similarly, the relative standard deviation values for intraday (Repeatability) and interday (Reproducibility) tests were less than 15%. Dissipation kinetics of dimethoate 30% emulsifiable concentrate at 200 and 400 g a.i h-1 recorded initial deposits of 5.20 and 10.05 µg g-1 and 0.33 and 0.48 µg g-1 for dimethoate and omethoate, respectively, and half-life of 3.07 and 3.34 days. The estimated hazard index value found more than one at a day after dimethoate application. It is not safe for consumer health to use curry leaves in the initial days after application.


Asunto(s)
Dimetoato , Hojas de la Planta , Cromatografía Liquida/métodos , Dimetoato/análogos & derivados , Dimetoato/análisis , Hojas de la Planta/química , Reproducibilidad de los Resultados , Medición de Riesgo , Espectrometría de Masas en Tándem/métodos
7.
Ultrason Sonochem ; 82: 105891, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34954630

RESUMEN

Pesticide residue in vegetables has been considered as a serious food safety problem across the whole world. This study investigates a novel advanced oxidation process (AOP), namely the coupled free chlorine/ultrasound (FC/US) process for the removal of three typical pesticides from lettuce. The removal efficiencies of dimethoate (DMT), trichlorfon (TCF) and carbofuran (CBF) from lettuce reached 86.7%, 79.8% and 71.3%, respectively by the FC/US process. There existed a synergistic effect in the coupled FC/US process for pesticide removal and the synergistic factors reached 22.3%, 19.0% and 36.4% for DMT, TCF and CBF, respectively. Based on the analysis of mass balance of pesticides, the synergistic effect was probably attributed to the efficient oxidation of pesticides both in vegetables and in water by the generated free radicals and FC. The surface area and surface structure of vegetables strongly affected the removal of pesticides by FC/US. The removal efficiency of DMT increased from 80.9% to 88.1% as solution pH increased from 5.0 to 8.0, and then decreased to 84.1% when solution pH further increased to 9.0. When the ultrasonic frequency changed from 20 to 40 kHz, a remarkable improvement in pesticide removal by FC/US was observed. As the FC concentration increased from 0 to 15 mg L-l, the removal efficiencies of pesticides increased firstly, and then became stagnant when the FC concentration further increased to 25 mg L-l. The pesticide degradation pathways based on the identified intermediates were proposed. The total chlorophyll content was reduced by less than 5% after the FC/US process, indicating a negligible damage to the quality of vegetables. It suggests that the FC/US process is a promising AOP for pesticides removal from vegetables.


Asunto(s)
Verduras , Cloro , Dimetoato/análisis , Residuos de Plaguicidas
8.
Food Chem ; 360: 130042, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34022519

RESUMEN

Bioremediation of pesticides in contaminated foodstuffs using probiotics has attracted great attention in recent years, but some intermediate products may have profound effects on the toxicity of treated food. Therefore, this work studied the degradation mechanism of dimethoate in milk by L. plantarum, and analyzed the toxicity of degradation products. The results showed that under the optimal conditions, L. plantarum can degrade 81.28% of dimethoate. Dimethoate had high binding affinities to phosphatase with the free energy of -16.67 kcal/mol, and amino acid residues, Gln375 and SER415 played important roles in the catalysis process. Five degradation products were identified using UPLC-QTOF/MS, and their toxicity was estimated using quantitative structure-activity relationship models. Some intermediate products were predicted to be toxic, which should not be ignored, but the overall toxicity of milk decreased after fermentation. Furthermore, the pH and titratable acidity of the fermented milk were 4.25 and 85 ◦T, respectively.


Asunto(s)
Dimetoato/metabolismo , Fermentación , Lactobacillus plantarum/metabolismo , Leche/química , Animales , Biodegradación Ambiental , Productos Lácteos Cultivados/análisis , Productos Lácteos Cultivados/microbiología , Dimetoato/análisis , Leche/microbiología
9.
PLoS One ; 15(9): e0239632, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32970749

RESUMEN

In recent years, there has been growing concern among consumers about pesticide contamination in fruits. Therefore, rapid, reliable, and consistent detection methods for OPPs, especially dimethoate, are crucially needed. The existing quantitative methods for detecting dimethoate are not suitable for rapid measuring system such as the dimethoate samples from two channels. Hence this paper examines the utilization of a dual-channel system for utilize the absorption variations of the Localized Surface Plasmon Resonance (LSPR) bands of gold nanoparticles (AuNPs) were investigate for detection of dimethoate. Under optimized conditions, the relationship between concentrations of dimethoate and absorbance ratios (A(520)/A(640)) was linearly found in the concentration range of 10-100 nM. Result from the experiment shows that both channels exhibit a linear correlation coefficient as high as 0.97 and a limit of detection (LOD) as low as 5.5 nM. This LSPR detection system was characterized by testing the dimethoate in apple samples and the recovery rates were found to be in the range of 85.90% to 107.37%. The proposed dual-channel LSPR system for detecting dimethoate creating a new approach for detecting organophosphate insecticide in agricultural fields. It could lay the foundation for designing a high-throughput analysis of the insecticides using a wavelength division multiplexing switch (WDMS).


Asunto(s)
Productos Agrícolas/normas , Dimetoato/análisis , Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Frutas/normas , Insecticidas/análisis , Resonancia por Plasmón de Superficie/métodos , Productos Agrícolas/química , Análisis de los Alimentos/normas , Frutas/química , Sensibilidad y Especificidad , Resonancia por Plasmón de Superficie/normas
10.
Chemosphere ; 258: 127265, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32540534

RESUMEN

Ferrate (Fe(VI)) is usually effective for oxidizing a variety of organic pollutants within a few seconds, but some recalcitrant asorganophosphorus pesticides such as dimethoate require higher dose of Fe(VI) and inorganic phosphorus produced by mineralization is difficult to remove. In this study, acid-activated ferrate (Fe(VI)) was firstly used to degrade organophosphorus pesticides dimethoate and simultaneously remove total phosphorus (TP) from solution under simulated sunlight. At a Fe(VI):dimethoate molar radio of 15:1, dimethoate was almost completely removed within 20 min and 47% of TP in the solution was removed by the reduction product of Fe(VI) within 240 min. Electron paramagnetic resonance (EPR) and terephthalic acid (TA) fluorescence experiments showed that •OH radicals were continuously generated in the system, and •OH formation pathway was proposed. Importantly, the involvement of •OH in acid-activated Fe(VI) process was confirmed for the first time by EPR. In the acid-activated Fe(VI)/simulated sunlight system, the removal of dimethoate and TP gradually increased with the decrement of activation pH, whereas the increase of molar ratio of Fe(VI):dimethoate enhanced the removal of dimethoate and TP. The addition of inorganic anions (HCO3- and NO2-) had obvious inhibitory effects on dimethoate and TP removal. Eight degradation products including O,O,S-trimethylphosphorothiate, omethoate and 2-S-methyl-(N-methyl) acetamide were determined by gas chromatography mass spectrometry (GC-MS) analysis, and two possible degradation pathways were proposed. The insights gained from this study open a new avenue to simultaneously degrade and remove organic contaminants.


Asunto(s)
Dimetoato/análisis , Hierro/química , Plaguicidas/análisis , Ácidos Ftálicos/química , Luz Solar , Contaminantes Químicos del Agua/análisis , Hierro/efectos de la radiación , Modelos Teóricos , Oxidación-Reducción , Purificación del Agua/métodos
11.
J Environ Sci Health B ; 55(4): 310-318, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31782687

RESUMEN

A simple and rapid method for the determination of dimethoate in water was developed based on the monitoring of the complex formation between bis 5-phenyldipyrrinate of nickel (II) and the herbicide dimethoate. The method showed a short response time (10 s), high selectivity (very low interference from other sulfate and salts), high sensitivity (limit of detection (LOD) 0.45 µM, limit of quantitation (LOQ) of 1.39 µM), and a Kd of 2.4 µM. Stoichiometry experiments showed that complex formation occurred with a 1:1 relation. The method was applied to different environmental water samples such as lagoon, stream, urban, and groundwater samples. The results indicated that independently from the water source, the method exhibited high precision (0.25-2.47% variation coefficient) and accuracy (84.42-115.68% recovery). In addition, the method was also tested using an effluent from a wastewater treatment plant from Mexico; however, the results indicated that the presence of organic matter had a pronounced effect on the detection.


Asunto(s)
Dimetoato/análisis , Espectrofotometría/métodos , Contaminantes Químicos del Agua/análisis , Agua/análisis , Dimetoato/química , Agua Subterránea/análisis , Agua Subterránea/química , Herbicidas/análisis , Herbicidas/química , Límite de Detección , Ríos/química , Sensibilidad y Especificidad , Análisis Espectral , Aguas Residuales/análisis , Agua/química
12.
J Fluoresc ; 29(6): 1475-1485, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31792741

RESUMEN

The combined use of 3D-fluorescence spectroscopy and independent component analysis using a differential fingerprinting approach has been applied with success to detect physiological effects of dimethoate in honeybees. Biochemical determinations combined with the identification of fluorescence zones that may correspond to proteins, NADH or neurotransmitters/neurohormones (octopamine, dopamine and serotonin) related to the physiological stress caused by the pesticide enabled phenomenological modeling of the physiological response in the honeybee using a simple and rapid method. The signals associated with the fluorophores involved in the response to stress were extracted from the fluorescence spectra using an unsupervised algorithm such as independent component analysis. The signals of different neurotransmitters were isolated on separated factorial components, thus facilitating their biochemical interpretation.


Asunto(s)
Abejas/efectos de los fármacos , Dimetoato/análisis , Fluorescencia , Plaguicidas/análisis , Acetilcolinesterasa/metabolismo , Animales , Biomarcadores/metabolismo , Dimetoato/metabolismo , Dimetoato/farmacología , Plaguicidas/envenenamiento , Espectrometría de Fluorescencia
13.
J Cell Biochem ; 120(6): 10777-10786, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30672607

RESUMEN

Toxic contamination of commonly consumed food products and water due to food chain vulnerability via agricultural products and commodities is a serious health hazard. This study reports on Santa Barbara Amorphous (SBA-15), a type of mesoporous silica nanoparticles, for efficient and stable acetylcholinesterase (AChE) adhesion toward detection of toxic pesticides. AChE was immobilized to the inert framework of mesoporous materials viz. SBA-15 with a proficient hydrolytic response toward acetylthiocholine. The immobilized system acts as a biosensor for the detection of pesticides, which are organophosphorus compounds in food. Both the SBA-15 and immobilized SBA-15 were characterized to give an insight on the physiochemical and morphological modification properties. The enzyme activity was accessed by Ellman's spectrophotometric bioassay for bare and enzyme-immobilized SBA-15 that resulted in promising enzymatic activity with the counterpart. Enzyme stability was also studied, which exhibited that immobilized AChE retained its catalytic activity up to 60 days and retained 80% of the hydrolytic activity even at 37°C. On the basis of the success of immobilized enzyme (covalent) being inhibited by acetylthiocholine, the sensor was administered for the inhibition by monocrotophos and dimethoate that are used widely as pesticides in agricultural. The inhibitory concentration (IC50 ) value was found to be 2.5 ppb for monocrotophos and 1.5 ppb for dimethoate inhibiting immobilized AChE. This was verified using cyclic voltammetry, an electrochemical analysis thus proving that the SBA-15@AChE complex could be used as a sensitive and highly stable sensor for detecting the concentration of hazardous pesticide compounds.


Asunto(s)
Acetilcolinesterasa/química , Dimetoato/análisis , Técnicas Electroquímicas , Enzimas Inmovilizadas/química , Monocrotofos/análisis , Plaguicidas/análisis , Acetiltiocolina/química , Adsorción , Técnicas Biosensibles/métodos , Bebidas Gaseosas/análisis , Pruebas de Enzimas , Contaminación de Alimentos/análisis , Humanos , Nanopartículas/química , Porosidad , Sensibilidad y Especificidad , Dióxido de Silicio/química
14.
Molecules ; 24(2)2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650543

RESUMEN

Dimethoate (DMT) is an organophosphate insecticide commonly used to protect fruit trees and in particular olive trees. Since it is highly water-soluble, its use on olive trees is considered quite safe, because it flows away in the residual water during the oil extraction process. However, its use is strictly regulated, specially on organic cultures. The organic production chain certification is not trivial, since DMT rapidly degrades to omethoate (OMT) and both disappear in about two months. Therefore, simple, sensitive, cost-effective and accurate methods for the determination of dimethoate, possibly suitable for in-field application, can be of great interest. In this work, a quick screening method, possibly useful for organic cultures certification will be presented. DMT and OMT in water and on olive leaves have been detected by surface enhanced Raman spectroscopy (SERS) using portable instrumentations. On leaves, the SERS signals were measured with a reasonably good S/N ratio, allowing us to detect DMT at a concentration up to two orders of magnitude lower than the one usually recommended for in-field treatments. Moreover, detailed information on the DMT distribution on the leaves has been obtained by Raman line- (or area-) scanning experiments.


Asunto(s)
Plaguicidas/análisis , Espectrometría Raman , Dimetoato/análisis , Estructura Molecular , Olea/química , Residuos de Plaguicidas/análisis , Hojas de la Planta/química , Espectrometría Raman/métodos , Contaminación Química del Agua
15.
Environ Sci Pollut Res Int ; 25(35): 35130-35142, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30328041

RESUMEN

In this study, a new magnetic adsorbent based on magnetite-sporopollenin/graphene oxide (Fe3O4-SP/GO) was successfully developed. The adsorbent was applied for magnetic solid phase extraction (MSPE) of three selected polar organophosphorus pesticides (OPPs), namely, dimethoate, phenthoate, and phosphamidon, prior to gas chromatography analysis with electron capture detection (GC-µECD). The Fe3O4-SP/GO adsorbent combines the advantages of superior adsorption capability of the modified sporopollenin (SP) with graphene oxide (GO) and magnetite (Fe3O4) for easy isolation from sample solution. Several MSPE parameters were optimized. Under optimized conditions, excellent linearity (R2 ≥ 0.9994) was achieved using matrix match calibration in the range of 0.1 to 500 ng mL-1. The limit of detection (LOD) method (S/N = 3) was from 0.02 to 0.05 ng mL-1. The developed Fe3O4-SP/GO MSPE method was successfully applied for the determination of these three polar OPPs in cucumber, long beans, bell pepper, and tomato samples. Good recoveries (81.0-120.0%) and good relative standard deviation (RSD) (1.4-7.8%, n = 3) were obtained for the spiked OPPs (1 ng mL-1) from real samples. This study is beneficial for adsorptive removal of toxic pesticide compounds from vegetable samples.


Asunto(s)
Óxido Ferrosoférrico/química , Grafito/química , Plaguicidas/química , Verduras/química , Adsorción , Biopolímeros/química , Carotenoides/química , Cromatografía de Gases , Dimetoato/análisis , Límite de Detección , Solanum lycopersicum , Magnetismo , Nanopartículas de Magnetita/química , Compuestos Orgánicos/análisis , Óxidos/química , Plaguicidas/análisis , Extracción en Fase Sólida/métodos
16.
Anal Chim Acta ; 1035: 60-69, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30224145

RESUMEN

This work describes the development of a new selective photocontrollable molecularly imprinted-based sorbent for the selective enrichment/pre-concentration of dimethoate from spiked olive oil samples. To achieve this goal an improved molecularly imprinted strategy relying on the embedding of a functional monomer containing an azobenzene chromophore as light-responsive element, on the crosslinked tridimensional molecular imprinted network, has been assessed. To address the mechanisms underlying template recognition and uptake/release of the analyte from the functional imprinted material, computational studies using a quantum chemical approach, have been explored. This new functional sorbent provides a straightforward controllable uptake/release of the target template using light as the stimuli tool, which is highly advantageous due to light manipulation characteristics, such as superior clean, precision and remote controllable properties. In general, this work will contribute to the implementation of a photoswitchable analytical methodology that proves to be suitable for the selective isolation and further quantification of dimethoate from olive oil matrices at levels similar to the maximum residues limits imposed by the legislation. The limits of detection, calculated based on 3σ, was 1.6 mgL-1 and the limit of quantification, based on 10σ, was 5.2 mgL-1. The implemented sample preparation shows high reproducibility and recoveries (93.3 ±â€¯0.4%).


Asunto(s)
Compuestos Azo/química , Benzoatos/química , Dimetoato/análisis , Contaminación de Alimentos/análisis , Impresión Molecular/métodos , Aceite de Oliva/química , Compuestos Azo/síntesis química , Benzoatos/síntesis química , Dimetoato/aislamiento & purificación , Insecticidas/análisis , Isomerismo , Límite de Detección , Fotoquímica/métodos , Reproducibilidad de los Resultados , Espectroscopía Infrarroja por Transformada de Fourier
17.
J Hazard Mater ; 357: 466-474, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29935459

RESUMEN

A novel electrochemical biosensor was designed for sensitive detection of organophosphate pesticides based on three-dimensional porous bimetallic alloy architecture with ultrathin nanowires (PdCo NWs, PdCu NWs, PdNi NWs) and monolayer MoS2 nanosheet (m-MoS2). The bimetallic alloy NWs/m-MoS2 nanomaterials were used as a sensing platform for electrochemical analysis of omethoate, a representative organophosphate pesticide, via acetylcholinesterase inhibition pathway. We demonstrated that all three bimetallic alloy NWs enhanced electrochemical responses of enzymatic biosensor, benefited from bimetallic synergistic action and porous structure. In particular, PdNi NWs outperformed other two bimetallic alloy. Moreover, PdNi NWs/m-MoS2 as an electronic transducer is superior to the corresponding biosensor in the absence of monolayer MoS2 nanosheet, which arise from synergistic signal amplification effect between different components. Under optimized conditions, the developed biosensor on the basis of PdNi NWs/m-MoS2 shows outstanding performance for the electrochemical assay of omethoate, such as a wide linear range (10-13 M∼10-7 M), a low detection limit of 0.05 pM at a signal-to-noise ratio of 3, high sensitivity and long-time stability. The results demonstrate that bimetallic alloy NWs/m-MoS2 nanocomposites could be excellent transducers to promote electron transfer for the electrochemical reactions, holding great potentials in the construction of current and future biosensing devices.


Asunto(s)
Técnicas Biosensibles , Inhibidores de la Colinesterasa/análisis , Dimetoato/análogos & derivados , Técnicas Electroquímicas , Contaminantes Ambientales/análisis , Plaguicidas/análisis , Acetilcolinesterasa/química , Aleaciones/química , Inhibidores de la Colinesterasa/química , Dimetoato/análisis , Dimetoato/química , Contaminantes Ambientales/química , Molibdeno/química , Nanocompuestos/química , Nanocables/química , Níquel/química , Paladio/química , Plaguicidas/química , Porosidad
18.
Food Chem ; 260: 61-65, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29699682

RESUMEN

A simple approach to fabricate a highly selective and sensitive dimethoate probe was developed based on Rhodamine B (RB)-functionalized gold nanoparticles (AuNPs). The quenching of RB fluorescence in the presence of AuNPs in the solution, mediated by fluorescence resonance energy transfer, was observed. In the presence of dimethoate, the fluorescence intensity of the RB-AuNP solution is gradually recovered when dimethoate molecules displace RB molecules on the surface of the AuNPs, which significantly increased the fluorescence intensity of RB. Fluorescence is proportional to the dimethoate concentration in the range of 0.005-1.0 ppm (R2 = 0.989), and the LOD was 0.004 ppm. The recoveries of dimethoate in water and fruit samples were 86-116% with a good RSD (< 9.3%). Because of its high sensitivity, excellent selectivity, and convenient fabrication process, this method is a promising candidate for dimethoate screening.


Asunto(s)
Dimetoato/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Nanopartículas del Metal/química , Contaminación de Alimentos/análisis , Oro/química , Límite de Detección , Rodaminas/química , Sensibilidad y Especificidad , Agua/química , Contaminantes Químicos del Agua/análisis
19.
J Mass Spectrom ; 52(11): 709-719, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28762560

RESUMEN

A new field of application for a relatively new mass-spectrometric interface such as desorption electrospray ionization was evaluated. For this purpose, its behavior was tested versus quantitative analysis of dimethoate, trifloxystrobin, and tebuconazole directly on olive and vine leaves surface. The goal was workers exposure assessment during field re-entry operations since evidence suggests an association between chronic occupational exposure to some agrochemicals and severe adverse effects. Desorption electrospray ionization gave good response working in positive ionization mode, while numerous test were necessary for the choice of a unique blend of spray solvents suitable for all 3 substances. The best compromise, in terms of signal to noise ratios, was obtained with the CH3 OH/H2 O (80:20) mixture. The obvious difficulties related to the impossibility to use the internal standard were overcome through an accurate validation. Limits of detection and quantitation, dynamic ranges, matrix effects, and intraday precisions were calculated, and a small monitoring campaign was arranged to test method applicability and to evaluate potential dermal exposure. This protocol was developed in work safety field, but after a brief investigation, it was find to be suitable also for food residue evaluation.


Asunto(s)
Acetatos/análisis , Dimetoato/análisis , Iminas/análisis , Olea/química , Plaguicidas/análisis , Hojas de la Planta/química , Estrobilurinas/análisis , Triazoles/análisis , Vitis/química , Calibración , Límite de Detección , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
20.
Talanta ; 174: 599-604, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28738628

RESUMEN

The aim of this work was to demonstrate the potentialities of the use of a molecularly imprinted (MIP) sensor coupled to a microextraction by packed sorbent (MEPS) strategy for the selective and sensitive detection of dimethoate in real samples. A dimethoate-polypyrrole MIP film was realised by cyclic voltammetry (CV) on the surface of a glassy carbon electrode (GCE). Being dimethoate electro-inactive, K3[Fe(CN)6] was used as probe for the indirect quantification of the analyte via the decrease of redox peaks observed upon binding of the target analyte. Detection of dimethoate at low nanomolar range was achieved with linearity in the 0.1-1nM range. Relative standard deviation calculated for different electrodes at 0.5nM of dimethoate was < 3% and selectivity was very satisfactory being the response for omethoate only 23% of dimethoate. A MEPS strategy for the extraction of dimethoate from a challenging matrix as wheat flour was then used in conjunction with the MIP electrochemical sensor. The procedure applied to flour samples spiked with dimethoate at 0.5 MRL, MRL, and 1.5 MRL gave very favourable comparison with a validated UHPLC-MS/MS method with deviations in the -21% /+17% range, demonstrating the feasibility of the approach as screening assay. This work clearly shows that the sequential use of a microextraction based procedure and electrochemical sensing system is low cost, easy to realise and use and can open new perspectives for the development of selective sensing system to be used in field or decentralised lab testing for the selective screening of target analytes.


Asunto(s)
Dimetoato/análisis , Dimetoato/aislamiento & purificación , Harina/análisis , Impresión Molecular , Polímeros/síntesis química , Microextracción en Fase Sólida/métodos , Triticum/química , Carbono/química , Electroquímica , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA